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Abstract
Recent advances in deep learning theory have

evoked the study of generalizability across differ-

ent local minima of deep neural networks (DNNs).

While current work focused on either discovering

properties of good local minima or developing

regularization techniques to induce good local

minima, no approach exists that can tackle both

problems. We achieve these two goals success-

fully in a unified manner. Specifically, based on

the observed Fisher information we propose a

metric both strongly indicative of generalizability

of local minima and effectively applied as a prac-

tical regularizer. We provide theoretical analysis

including a generalization bound and empirically

demonstrate the success of our approach in both

capturing and improving the generalizability of

DNNs. Experiments are performed on CIFAR-10,

CIFAR-100 and ImageNet for various network

architectures.

1. Introduction
Recently, there has been a surge in the interest of acquiring

a theoretical understanding over deep neural network’s be-

havior. Breakthroughs have been made in characterizing the

optimization process, showing that learning algorithms such

as stochastic gradient descent (SGD) tend to end up in one

of the many local minima which have close-to-zero train-

ing loss (Choromanska et al., 2015; Dauphin et al., 2014;

Kawaguchi, 2016; Nguyen & Hein, 2018; Du et al., 2018).

However, these numerically similar local minima typically

exhibit very different behaviors in terms of generalizability.

It is, therefore, natural to ask two closely related questions:

(a) What kind of local minima can generalize better? (b)

How to find those better local minima?

To our knowledge, existing work focused only on one of

the two questions. For the “what” question, various def-
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initions of “flatness/sharpness” have been introduced and

analyzed (Keskar et al., 2017; Neyshabur et al., 2018; 2017;

Wu et al., 2017; Liang et al., 2017). However, they suffer

from one or more of the problems: (1) being mostly the-

oretical with no or poor empirical evaluations on modern

neural networks, (2) lack of theoretical analysis and un-

derstanding, (3) in practice not applicable to finding better

local minima. Regarding the “how” question, existing ap-

proaches (Hochreiter & Schmidhuber, 1997; Sokolić et al.,

2017; Chaudhari et al., 2017; Hoffer et al., 2017; Neyshabur

et al., 2015a; Izmailov et al., 2018) share some of the com-

mon drawbacks: (1) derived only from intuitions but no

specific metrics provided to characterize local minima, (2)

no or weak analysis of such metrics, (3) not applicable or no

consistent generalization improvement for modern DNNs.

In this paper, we tackle both the “what” and the “how” ques-

tions in a unified manner. Our answer provides both the the-

ory and applications for the generalization problems across

different local minima. Based on the determinant of Fisher

information estimated from the training set, we propose a

metric that solves all the aforementioned issues. The metric

can well capture properties that characterize local minima

of different generalization ability. We provide its theoret-

ical analysis, primarily a generalization bound based on

PAC-Bayes (McAllester, 1999b;a). For modern DNNs in

practice, it is necessary to provide a tractable approximation

of our metric. We propose an intuitive and efficient approx-

imation to compare it across different local minima. Our

empirical evaluations fully illustrate the effectiveness of the

metric as a strong indicator of local minima’s generalizabil-

ity. Moreover, from the metric we further derive and design

a practical regularization technique that guides the optimiza-

tion process in finding better generalizable local minima.

The experiments on image classification datasets demon-

strate that our approach gives consistent generalization boost

for a range of DNN architectures. Codes are available at

https://github.com/SeanJia/InfoMCR.

2. Related Work
It has been empirically shown that larger batch sizes lead

to worse generalization (Keskar et al., 2017). Hoffer et al.

(2017) analyzed how the training dynamics is affected by

different batch sizes and presented a perturbed batch nor-
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malization technique for better generalization. While it

effectively improves generalization for large-batch training,

a specific metric that indicates the generalizability is miss-

ing. Similarly, Elsayed et al. (2018) employed a structured

margin loss to improve performance of DNNs w.r.t. noise

and adversarial attack yet no metric was proposed. Further-

more, this approach essentially provided no generalization

gain in the normal training setup.

The local entropy of the loss landscape was proposed to

measure “flatness” in Chaudhari et al. (2017), which also

designed an entropy-guided SGD that achieves faster con-

vergence in training DNNs. However, the method does

not consistently improve generalization, e.g., a decrease of

performance on CIFAR-10 (Krizhevsky & Hinton, 2009).

Another method that focused on modifying the optimiza-

tion process is the Path-SGD proposed by Neyshabur et al.

(2015a). Specifically, the authors derived an approximate

steepest descent algorithm that utilizes the path-wise norm

regularization to achieve better generalization. The authors

only evaluated it on a two-layer neural network, very likely

since the path norm is computationally expensive to opti-

mize during training.

A flat minimum search algorithm was proposed by Hochre-

iter & Schmidhuber (1997) based on the “flatness” of local

minima defined as the volume of local boxes. Yet since

the boxes have their axes aligned to the axes of the model

parameters, their volumes could be significant underestima-

tions of “flatness” for over-parametrized networks, due to

the specific spectral density of Hessian of DNNs studied

in Pennington & Worah (2018); Sagun et al. (2018). The

authors of Wu et al. (2017) also characterized the “flatness”

by volumes. They considered the inverse volume of the

basin of attraction and proposed to use the Frobenius norm

of Hessian at the local minimum as a metric. In our experi-

ments, we show that their metric does not accurately capture

the generalization ability of local minima under different

scenarios. Moreover, they have not derived a regularizer

from their metric.

Based on a “robustness” metric, Sokolić et al. (2017) derived

a regularization technique that successfully improves gen-

eralization on multiple image classification datasets. Nev-

ertheless, we show that their metric fails to capture the

generalizability across different local minima.

By using the Bayes factor, MacKay (1992) studied the gen-

eralization ability of different local minima obtained by

varying the coefficient of L2 regularization. It derived a

formula involving the determinant of Hessian, similar to the

one in ours. Whereas, this approach has restricted settings

and, without proposing an efficient approximation, its met-

ric is not applicable to modern DNNs, let alone serving as a

regularizer. A generalization bound is missing in MacKay

(1992) as well.

In a broader context of the “what” question, properties that

capture the generalization of neural networks have been ex-

tensively studied. Various complexity measures for DNNs

have been proposed based on norm, margin, Lipschitz con-

stant, compression and robustness (Bartlett & Mendelson,

2002; Neyshabur et al., 2015b; Sokolić et al., 2017; Xu &

Mannor, 2012; Bartlett et al., 2017; Zhou et al., 2019; Dzi-

ugaite & Roy, 2017; Arora et al., 2018; Jiang et al., 2019).

While some of them aimed to provide tight generalization

bounds and some of them to provide better empirical results,

none of the above approaches explored the “how” question

at the same time.

Very recently, Karakida et al. (2019) and Sun & Nielsen

(2019) studied the Fisher information of the neural network

through the lens of its spectral density. In specific, Karakida

et al. (2019) applied mean-field theory to study the statistics

of the spectrum and the appropriate size of the learning rate.

Also, an information-theoretic approach, Sun & Nielsen

(2019) derived a novel formulation of the minimum descrip-

tion length in the context of deep learning by utilizing tools

from singular semi-Riemannian geometry.

3. Outline and Notations
In a typical K-way classification setting, each sample

x ∈ X belongs to a single class denoted cx ∈ {0, 1, ...,K}
according to the probability vector y ∈ Y , where Y is the

k-dimensional probability simplex so that p(cx = i) = yi
and

∑
i yi = 1. Denote a feed-forward DNN parametrized

by w ∈ R
W as fw : X → Y , which uses nonlinear ac-

tivation functions and a softmax layer at the end. Denote

the cross entropy loss as �(fw(x), y) = −∑
i yi ln fw(x)i.

Denote the training set as S, defined over X × Y with

|S| = N . The training objective is given as L(S, w) =
1
N

∑
(x,y)∼S �(fw(x), y). Assume S is sampled from some

true data distribution denoted D, we can define expected

loss L(D, w) = E(x,y)∼D[�(fw(x), y)]. Throughout this

paper, we refer a local minimum of L(S, w) corresponding

to a local minimizer w0 as just the local minimum w0. Our

paper’s outline and main achievements are:

• In Sec. 4 we relates Fisher information to neural net-

work training as a prerequisite.

• In Sec. 5.1 we propose a metric γ(w0) that well cap-

tures local minima’s generalizability.

• In Sec. 5.2 we provide a generalization bound related

to γ(w0).

• In Sec. 5.3 we propose an approximation γ̂(w0) for

γ(w0), which is shown to be very effective in Sec. 7.1

via extensive empirical evaluations.

• In Sec. 6 we devise a practical regularizer from γ̂(w0)
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that consistently improves generalizability across dif-

ferent DNNs, as evaluated in Sec. 7.2.

3.1. Other Notations

Denote ∇w as gradient, Jw[·] as Jacobian matrix, ∇2
w as

Hessian, DKL(·‖·) as KL divergence, ‖·‖2 as spectrum or

Euclidean norm, ‖·‖F as Frobenius norm, |·| as determinant,

tr(·) as trace norm, ρ(·) as spectral radius, ��S(w) as log-

likelihood on S , and [·]i for selecting the ith entry.

We define �x(w) ∈ R
K whose ith entry is − ln fw(x)i so

that �(fw(x), y) = �x(w)
T y. We define ỹ ∈ R

K as the

one-hot version of y, i.e., only keep the largest dimension

as 1. Then we define L̃(S, w) ∈ R
N as the one-hot and vec-

torized version of L(S, w), i.e., a vector whose entries are

�(fw(x), ỹ) for (x, y) ∈ S . In other words, we approximate

the cross entropy loss �(fw(x), y) by �(fw(x), ỹ).

4. Local Minimum and Fisher Information
First of all, if y is strictly one-hot and the training accuracy

achieved at w0 is 100%, then w0 cannot be a local mini-

mizer, because the cross entropy loss remains positive even

if arbitrarily close to zero. To admit local minima of full

training accuracy, we assume the widely used label smooth-

ing (LS) (Szegedy et al., 2016) is applied to train all models

in our analysis. LS enables us to assume a local minimum

w0 of the training loss with
∑

(x,y)∈S DKL(fw0
(x)‖y) = 0.

Although empirically we find that both our proposed metric

and derived regularizer work similarly well without LS.

With LS in mind, each sample (x, y) ∈ S has its label cx
sampled by p(cx = i|x) = yi, denoted as cx ∼ y. We

denote the training data distribution as (x, cx) ∼ S. The

joint probability p(x, cx) modeled by the DNN is p(x, cx =
i;w) = p(cx = i|x;w) p(x) = [fw(x)]i p(x) with p(x) =
1
N . We can relate the training loss L(S, w) to the negative

log-likelihood −��S(w) by:

L(S, w) = 1

N

∑
(x,y)∈S

�x(w)
T y

= − 1

N

∑
(x,y)∈S

E
cx∼y

ln p(cx|x;w)

= − 1

N
��S(w) + ln

1

N

where − ��S(w) = −
∑

(x,y)∈S
Ecx∼y ln p(x, cx;w)

Also, w0 corresponds to a local maximum of the likelihood

function. The observed Fisher information (Efron & Hink-

ley, 1978) evaluated at w0 is defined using the Hessian of

the negative log-likelihood, i.e.,

IS(w0) = − 1

N
∇2

w��S(w0) = ∇2
wL(S, w0)

= E
(x,cx)∼S

[∇w ln pw0
(cx)∇w ln pw0

(cx)
T ] (1)

where pw0
(cx) denotes p(cx|x;w0). The first equality is

straightforward; the second has its proof in Appendix A.

Since p(cx = i|x) = yi and ln p(cx = i|x;w0) =
[�x(w0)]i, we can further simplify the Equation 1 to:

IS(w0) =
1

N

∑
(x,y)∈S

K∑
i=1

∇w[�x(w0)]i∇w[�x(w0)]
T
i (2)

Remark: A global minimum w0, if exists, is equivalent

to a local minimum with 100% training accuracy. At such

w0, we have ∇w�(fw0
(x), y) = 0 as DKL(fw0

(x)‖y) = 0;

however, we also have IS(w0) ∈ R
W×W �= 0.

5. Local Minima Characterization
In this section, we derive and propose our metric, provide a

PAC-Bayes generalization bound, and lastly, propose and

give intuitions of an effective approximation of our metric

for modern DNNs.

5.1. Fisher Determinant as Generalization Metric

We would like a metric to compare different local minima.

Under the Assumption 1, we can partition the parameter

space of the neural network fw into disjoint regions, each is

a small neighborhood of a local minimum taken into account.

Formally, for a local minimum w0 and a sufficiently small

V > 0, we define the model class M(w0) as the largest con-

nected subset of {w ∈ R
W : L(S, w) ≤ h} that contains

w0, where the height h is defined as a real number such that

the volume (namely the Lebesgue measure) of M(w0) is

V . By the Intermediate Value Theorem, for any sufficiently

small V there exists a corresponding height h. In essence, a

local minimum w0 of the entire parameter space becomes

the global minimum of the model class M(w0).

Formulated as a model class selection problem, we can com-

pare different local minima by comparing their associated

model classes. We propose our metric γ(·), where lower

γ(w0) indicates a better generalizable local minimum w0:

γ(w0) = ln |IS(w0)| (3)

As a metric, γ(w0) requires |IS(w0)| �= 0. Therefore, we

state the following Assumption 1.

Assumption 1. The local minima w0 we care about in the
comparison are well isolated and unique in their corre-
sponding neighborhood M(w0).
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The Assumption 1 is quite reasonable. For state-of-the-

art network architectures used in practice, this is often the

fact. To be precise, the Assumption 1 is violated when the

Hessian matrix at a local minimum is singular. Specifically,

Orhan & Pitkow (2018) summarizes three sources of the

singularity: (i) due to a dead neuron, (ii) due to identical

neurons, and (iii) linear dependence of the neurons. As well

demonstrated in Orhan & Pitkow (2018), network with skip

connection, e.g. ResNet (He et al., 2016), WRN (Zagoruyko

& Komodakis, 2016), and DenseNet (Huang et al., 2017)

used in our experiments, can effectively eliminate all the

aforementioned singularity.

In Dinh et al. (2017), the authors pointed out another

source of the singularity specifically for networks with scale-

invariant activation functions, e.g. ReLU. Namely, one can

rescale the model parameters layer-wise so that the underly-

ing function represented by the network remains unchanged

in the region. In practice, this issue is not critical. Firstly,

most modern deep ReLU networks, e.g. ResNet, WRN, and

DenseNet, have normalization layers, e.g. BatchNorm (Ioffe

& Szegedy, 2015), applied before the activations. Batch-

Norm shifts all the inputs to the ReLU function, equivalently

shifting the ReLU horizontally which makes it no longer

scale-invariant. Secondly, due to the ubiquitous use of Gaus-

sian weights initialization scheme and weight decay, most

local minima obtained by gradient learning have weights of

a relatively small norm. Consequently, in practice, we will

not compare two local minima essentially the same but have

one as the rescaled version of the other with a much larger

norm of the weights.

Note that normally we have a limited size of the dataset, and

so an approximation of γ(w0) is a must. We present our

approximation scheme and its intuition in Sec. 5.3.

5.1.1. CONNECTION TO FISHER INFORMATION

APPROXIMATION (FIA) CRITERION

Our metric γ(w0) is closely related to the FIA criterion.

Based on the MDL principle (Rissanen, 1978), Rissanen

(1996) derived the FIA criterion to compare statistical mod-

els. Tailored to our setting, each model class M(w0) has its

FIA criterion as (lower FIA is better):

FIA =−
∑

(x,y)∈S
E

cx∼y
ln p(x, cx;w0)

+
W

2
ln

N

2π
+ ln

∫
M(w0)

√
|J (w)| dw

Where J (w) is the expected Fisher information evaluated

at w. Notice that all regularity conditions of the FIA crite-

rion are satisfied for the local minimum w0 (also the global

optimum of the model class), provided 100% training accu-

racy and the Assumption 1. Ignoring the constant terms and

assuming the training loss is locally quadratic in M(w0)

(later formalized and validated as Assumption 2), the RHS

becomes lnV + 1
2 ln |J (w0)|. Remind that V is defined as

the volume of M(w0), also a constant.

Essentially in our metric we use the observed Fisher infor-

mation in place of the expected one, making our metric

tractable and applicable to modern DNNs.

5.1.2. CONNECTION TO EXISTING

FLATNESS/SHARPNESS METRICS

As mentioned in Sec. 2, the “flatness” of a local minimum

was firstly related to the generalization ability of the neural

network in Hochreiter & Schmidhuber (1997), where the

concept and the method are both preliminary. The idea is

recently popularized in the context of deep learning by a

series of paper such as Keskar et al. (2017); Chaudhari et al.

(2017); Wu et al. (2017). Our approach roughly shares the

same intuition with these existing works, namely, a “flat”

local minimum admits less complexity and so generalizes

better than a “sharp” one. To our best knowledge, our pa-

per is the first among these work that provides both the

theoretical analysis including a generalization bound and

the empirical verification of both an efficient metric and a

practical regularizer for modern network architectures.

5.2. Generalization Bound

Assumption 2. Given the training loss L(S, w), its local
minimum w0 satisfying Assumption 1 and the associated
neighborhood M(w0) whose volume V is sufficiently small,
as described in Sec. 3, 4 and 5.1, respectively, when confined
to M(w0), we assume that L(S, w) is quadratic.

The Assumption 2 is quite reasonable as well. Grünwald &

Grunwald (2007) suggests that, a log-likelihood function,

under regularity conditions (1) existence of its 1st, 2nd &

3rd derivatives and (2) uniqueness of its maximum in the

region, behaves locally like a quadratic function around its

maximum. In our case, L(S, w) corresponds to the log-

likelihood function ��S(w) and so w0 corresponds to a local

maximum of ��S(w). Since L(S, w) is analytic and w0 is

the only local minimum of L(S, w) in M(w0), the training

loss indeed can be considered locally quadratic.

Similar to Langford & Caruana (2002), Harvey et al. (2017)

and Neyshabur et al. (2017), we apply the PAC-Bayes The-

orem (McAllester, 2003) to derive a generalization bound

for our metric. Specifically, we pick a uniform prior P over

w ∈ M(w0) according to the maximum entropy principle

and pick the posterior Q of density q(w) ∝ e−|L0−L(S,w)|

with L0 =Δ L(S, w0). Then Theorem 1 bounds the expected

generalization loss using γ(w0) (proved in Appendix B).

Theorem 1. Given |S| = N , D, L(S, w) and L(D, w)
described in Sec. 3, a local minimum w0, the volume V of
M(w0) sufficiently small, the Assumption 1 & 2 satisfied,
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and P,Q defined above, for any δ ∈ (0, 1], we have with
probability at least 1− δ that:

E
w∼Q

[L(D, w)] ≤ E
w∼Q

[L(S, w)] + 2

√
2L0 + 2A+ ln 2N

δ

N − 1

where A =
1

4πe
WV

2
W π

1
W exp{γ(w0)

W
}

Where W is the number of model parameters (defined in

Sec. 3) and V the volume controlling the size of the neigh-

borhood taken into account around w0 (defined in Sec. 5.1).

In short, Theorem 1 shows that a lower γ(w0) indicates a

local minimum w0 of better generalization.

5.3. Approximation

As stated in Sec. 4, in practice an approximation of γ(w0)
as γ̂(w0) is necessary, as calculating γ(w0) involves com-

puting the product of all W non-zero eigenvalues of the

Fisher information matrix. Assume an imagined training

set S ′ of size W and a local minimum w0 of L(S ′, w); then

ln |IS′(w0)| is well defined on the full-rank Fisher informa-

tion denoted as IS′(w0). In reality, we only have a training

set S ⊂ S ′ with |S| non-zero eigenvalues of the singular

matrix IS(w0). Similar to the approach in Karakida et al.

(2019), we propose to approximate eigenvalues of IS′(w0)
by the non-zero eignevalues of IS(w0), or equivalently, as

shown later, by the eigenvalues of sub-matrices of IS′(w0).

First of all, we replace y by its one-hot version ỹ defined in

Sec. 3.1, drastically reducing the cost of gradient calcula-

tion. This is reasonable since y and ỹ are very close. With

L̃(S, w) ∈ R
N defined in Sec. 3.1, according to Equation

2, we have IS′(w0) ∈ R
W×W as:

IS′(w0) ≈ 1

W

∑
(x,y)∈S′

∇w[�x(w0)]y∇w[�x(w0)]
T
y

where y = argmax(y)

=
1

W
Jw[L̃(S ′, w)]TJw[L̃(S ′, w)]

=
1

W
Jw[L̃(S ′, w)] Jw[L̃(S ′, w)]T (4)

Let {λm}Wm=1 denote the eigenvalues of IS′(w0); then

γ(w0) = ln
∏W

m=1 λm =
∑W

m=1 lnλm. Ideally we

want to perform a Monte-Carlo estimation of γ(w0) by

randomly sampling N ′ < N � W eigenvalues from

{λm}Wm=1, where N is the size of S. We denote the

samples as {λn}N ′
n=1 and we have W

N ′
∑N ′

n=1 lnλn ≈∑W
m=1 lnλm. Suppose the estimation is run T times, we

have limT→∞ 1
T

∑T
t=1

W
N ′

∑N ′

n=1 lnλn = γ(w0).

Then the eigenvalue approximation comes in. We sample

St ⊂ S i.i.d. with |St| = N ′ for T times and define

ξt(w0) =
Δ Jw[L̃(St, w0)]Jw[L̃(St, w0)]

T ∈ R
N ′×N ′

(5)

Notice that ξt(w0) is a principal sub-matrix of WIS′(w0)
by removing rows & columns for data in S \ St. According

to Theorem 2 in Appendix C and properties of the spectral

density of Fisher information (Pennington & Worah, 2018;

Sagun et al., 2018; Karakida et al., 2019), one can well

approximate the eigenvalues of IS′(w0) by those of its sub-

matrices. Therefore we define the estimation γ̂(w0) as:

γ̂(w0) =
Δ 1

T

T∑
t=1

ln
∣∣ξt(w0)

∣∣ (6)

The relation between γ̂(w0) and γ(w0) is given as:

γ(w0) ≈ W

N ′ γ̂(w0) +W ln
1

W
as T → ∞

We leave the derivation of Equation 7 to Appendix C. In

proposing γ̂(w0), we ignore the constants and irrelevant

scaling factors. Empirically we find that given relatively

large number of sample trials T , our metric γ̂(·) can effec-

tively capture the generalizability of a local minimum even

for a small N ′ (details in Sec. 7.1 and Appendix D).

6. Local Minima Regularization
Besides pragmatism, devising a practical regularizer based

on γ(w0) also “verifies” our theoretical understanding of

DNN training, helping the future improvement of the learn-

ing algorithms. Following the approximation scheme in Sec.

5.3, it is natural to regularize γ(w0) during mini-batch learn-

ing by minimizing the product of |B| non-zero eigenvalues

of the Fisher information computed IB(w0), computed via

the current batch B, other than directly minimizing γ(w0).
However, this is far from practical due to the computation

burden of:

1. computing the eigenvalues in each training step

2. computing second-order derivatives (i.e., computing

the gradients of γ̂(w0) with respect to w0)

There is another major challenge. All of our theoretical anal-

ysis of γ(·) works on the grounds that the Assumption 1 & 2

are reasonable and satisfied, i.e., the largest |B| eigenvalues

of IB(w0) evaluated at the local minimum w0 are non-zero.

However, directly minimizing the product of these positive

eigenvalues pays too much attention to the smallest eigen-

values, which can easily result in zero eigenvalues, raising

singularity and thus violating the assumptions. Instead, we

need the effort more spread out. A good choice is to mini-

mize the trace norm tr
(IB(w0)

)
, which provides an upper

bound of the product of eigenvalues in the form of:∏
i

λi

(IB(w0)
)1/|B| ≤ 1

|B| tr
(IB(w0)

)
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Although this bound is not be tight in general, we are tight-

ening it when we minimize the trace norm. According to

Corollary 1 in Rodin et al. (2017), we have:

1

|B| tr
(IB(w0)

)−∏
i

λi

(IB(w0)
)1/|B| ≤

√
|B| − 1 σ

Where σ denotes the standard deviation of the eigenvalues

of IB(w0). As pointed out in Pennington & Worah (2018);

Sagun et al. (2018); Karakida et al. (2019), these eigenvalues

are highly concentrated with only a few very large “outliers”

which contribute the most to the variance. When we mini-

mize the trace norm, i.e. the L1 norm of the eigenvalues, the

largest few eigenvalues bear the most weight before they are

reduced to a level that has the bound effectively tightened.

Furthermore, computing the trace norm does not require

computing eigenvalues; thus optimizing them removes the

first computation burden.

Similar to the approach in Equation 4, we approximate y
by its one-hot version ỹ. For simplicity, for the rest of

this section, we denote ỹ as y and correspondingly denote

Ej [L̃(·, w0)]j as L(·, w0), where L̃ is the one-hot vectorized

loss defined in Sec. 3.1.

Given a vector x, we have tr(xxT ) = ||x||22. Therefore, we

choose to approximate the trace norm as:

tr
(IB(w0)

) ≈ 1

|B|
∑

(x,y)∈B

∥∥∇w�(fw0(x), y)
∥∥2
2

To compute such quantity we need gradients for each indi-

vidual data point. We simplify this computation by grouping

data points into batches and computing averaged gradients

instead. We randomly split B into M sub-batches of equal

size, namely {Bi}Mi=1. We define

gi =
Δ ∇wL(Bi, w0)

and then choose to optimize 1
M

∑M
i ‖gi‖22 instead of opti-

mizing 1
|B|

∑
(x,y)∈B ‖∇w�(fw0

(x), y)‖22, which drastically

boosts the speed performance.

We deal with the second computation burden by adopting

first order approximation. For any w, with a sufficiently

small α > 0, we have:

L̃(Bi, w − αgi) ≈ L̃(Bi, w)− Jw[L̃(Bi, w)] αgi

Thereby, we can estimate
∥∥gi∥∥22 by:

α
∥∥gi∥∥22 =

1

|Bi|
|Bi|∑
j=1

[
Jw[L̃(Bi, w)] αgi

]
j

≈ 1

|Bi|
|Bi|∑
j=1

[L̃(Bi, w)− L̃(Bi, w − αgi)]j

= L(Bi, w)− L(Bi, w − αgi)

Therefore, we propose to optimize the following regularized

training objective for each mini-batch gradient descent step:

L(B, w) + βRα(w) where (7)

Rα(w) =
Δ 1

M

M∑
i=1

[L(Bi, w)− L(Bi, w − αgi)
]

= L(B, w)− 1

M

M∑
i=1

L(Bi, w − αgi)

Illustrated in Fig. 1, an intuition is that Eq. 7 penalizes a

divergent set of gradients across samples in a mini-batch.

We omit any second order term when computing ∇wRα(w),
simply by not back-propagating the gradient through gi. We

outline our regularized training step as Algorithm 1, which

has 3 hyper-parameters: α, β and M .

Algorithm 1 Regularized Gradient Descent 1

1: procedure UPDATE(w,B; α, β,M )

2: {Bi}Mi=1 ← B � Split the mini-batch B
3: for i ← 1 to M do
4: gi ← ∇wL(Bi, w0)
5: gi ← copy(gi) � Stop the gradient2

6: end for
7: Rα(w) ← 1

M

∑M
i=1

[L(Bi, w)−L(Bi, w− αgi)
]

8: ∇wLreg ← ∇w[L(B, w) + βRα(w)]
9: Update weights w with ∇wLreg

10: end procedure

Figure 1. An illustration of Algorithm 1. In essence, the regular-

izer guides the optimization process to areas with less divergent

gradients of different data points within a mini-batch.

7. Experiments
We perform two sets of experiments to illustrate the effec-

tiveness of our metric γ(w0). We demonstrate that: (1)

the approximation γ̂(w0) captures the generalizability well

across local minima; (2) our regularization technique based

on γ(w0) provides consistent generalization gain for DNNs.

1Compatible with any gradient descent-based optimizer.
2Implemented as stop_gradient in TensorFlow.
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Throughout our theoretical analysis, we assume that label

smoothing (LS) is applied during model training in order to

obtain well-defined local minima (first mentioned in Sec. 4).

In all our empirical evaluations, we perform both the version

with LS applied and without. Results are very similar and

so we stick to the version without LS to be consistent with

the original setup in papers of the various DNNs that we

used. As a result, ỹ and y refers to the same quantity.

7.1. Experiments on Local Minima Characterization

We perform comprehensive evaluations to compare our met-

ric γ̂(·) with several others on ResNet-20 (He et al., 2016)

for the CIFAR-10 dataset (architecture details in Appendix

E). Our metric consistently outperforms others in indicating

local minima’s generalizability. Specifically, Sokolić et al.

(2017) proposed a robustness-based metric used as a regu-

larizer; Wu et al. (2017) proposed to use Frobenius norm

of the Hessian as a metric; Keskar et al. (2017) proposed

a metric closely related to the spectral radius of Hessian.

In summary, we compare 4 metrics, all evaluated at a local

minimum w given training set S. All four metrics go for

“smaller values indicate better generalization”.

• Robustness: 1
N

∑
(x,y)∈S

∥∥Jx[fw(x)]
∥∥2
2

• Frobenius norm:
∥∥∇2

wL(S, w)
∥∥2
F

• Spectral radius: ρ(∇2
wL(S, w))

• Ours: γ̂(w) = 1
T

∑T
t=1 ln |ξ(St, w0)|, St ⊂ S

Both the Frobenius norm and the spectral radius based

metric are related to ours, as from Equation 1 we have∥∥∇2
wL(S, w)

∥∥2
F

=
∥∥IS(w)∥∥2F and ρ(∇2

wL(S, w)) =
ρ(IS(w)). These two metric, however, are too expensive to

compute for the entire training set S; we instead calculate

them by averaging the results for T sampled St ⊂ S , simi-

lar to when we compute γ̂(w). We leave details of how we

exactly compute these metrics to Appendix D.

We perform evaluations in three scenarios, similar to

Neyshabur et al. (2017); Keskar et al. (2017). We com-

pute the 4 metrics on different local minima arising due to

(1) a confusion set of varying size in training, (2) different

data augmentation schemes, and (3) different batch size.

• In Scenario I, we randomly select a subset of 10000

images from CIFAR-10 as the training set and train the

DNN with a confusion set consisting of images with

random labels. We vary the size of the confusion set so

that the resulting local minima generalize differently

to the test set while all remain close-to-zero training

losses. We consider confusion size of 0, 1k, 2k, 3k, 4k

and 5k. We calculate all metrics based on the sampled

10000 training images.

• In Scenario II, we vary the level of data augmentation.

We apply horizontal flipping, denoted flip-only,

random cropping from images with 1 pixel padded

each side plus flipping, denoted 1-crop-f, random

cropping with 4 pixels padded each side plus flipping,

denoted 4-crop-f and no data augmentation at all,

denoted no-aug. Under all schemes, the network

achieves perfect training accuracy. All the metrics are

computed on the un-augmented training set.

• In Scenario III, we vary the batch size. Hoffer et al.

(2017) suggests that large batch sizes lead to poor gen-

eralization. We consider the batch sizes to be 128, 256,

512 and 1024.

The default values for the 3 variables are confusion size 0,

4-crop-f and batch size 128. For each configuration in

each scenario, we train 5 models and report results (average

& standard deviations) of all metrics as well as the test

errors (in percentage). For the confusion set experiments,

we sample a new training set and a new confusion set every

time. In all scenarios, we train the model for 200 epochs

with an initial learning rate 0.1, divided by 10 whenever

the training loss plateaus. Within each scenario, we find

the final training loss very small and very similar across

different models and the training accuracy essentially equal

to 1, indicating the convergence to local minima.

The results are in Figure 2, 3 and 4 for Scenario I, II and III,

respectively. Our metric significantly outperforms others

and is very effective in capturing the generalization proper-

ties, i.e., a lower value of our metric consistently indicates a

better generalizable local minimum.

7.2. Experiments on Local Minima Regularization

We evaluate our regularizer on CIFAR-10, CIFAR-100 and

the ImageNet classification task (Deng et al., 2009). For

CIFAR-10 & CIFAR-100, we evaluate on four different net-

work architectures including a plain CNN, ResNet-20, Wide

ResNet (Zagoruyko & Komodakis, 2016) and DenseNet

(Huang et al., 2017). We use WRN-28-2-B(3,3) from

Zagoruyko & Komodakis (2016) and the DenseNet-BC-

k=12 from Huang et al. (2017). We evaluate ImageNet clas-

sification on WRN-18-1.5 from Zagoruyko & Komodakis

(2016). In specific, we follow Sokolić et al. (2017) to down-

sample all images to 128×128 and apply standard data aug-

mentations. See Appendix E for architecture and training

details. We denote the four networks as CNN, ResNet-20,

WRN-28-2 / WRN-18 and DenseNet-k12, respectively.

For the three hyper-parameters α, β,M in our proposed

Algorithm 1, we find α and M quite robust and manually

set α = 0.0001, M = 8 in all experiments and select β
by validation via a 45k/5k training data split for each of

the network architecture & dataset pair. In specific, we
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Figure 2. Scenario I: Varied size of the confusion set. 5 models are trained for each size of the confusion set (x-axis). Solid lines are the

average result; shaded areas represent the ± 1 standard deviation (same for Figure 3 and 4). A larger confusion set leads to a higher test

error, a trend well captured by our metric and the other two; the robustness based metric fails.

Figure 3. Scenario II: Varied data augmentation schemes. Four different schemes are used. Our metric works well as an indicator of the

test error while all the other metrics completely fail.

Figure 4. Scenario III: Larger batch size leads to worse generalization, captured by all the metrics except for the robustness based one.

Table 1. Test error (%) on CIFAR-10/100. In general, a model with more parameters admits more space for regularization. The

representation power of ResNet-20 is too limited for CIFAR-100 (resulting in poor convergence); so we ignore it in our experiments.

CNN CNN+reg WRN-28-2 WRN-28-2+reg DenseNet-k12 DenseNet-k12+reg ResNet-20 ResNet-20+reg

CIFAR-10 8.52 ± 0.23 7.55 ± 0.06 5.63 ± 0.20 5.15 ± 0.09 4.61 ± 0.08 4.37 ± 0.06 8.50 ± 0.31 7.89 ± 0.13
CIFAR-100 31.12 ± 0.35 29.27 ± 0.17 25.71 ± 0.24 23.88 ± 0.13 22.54 ± 0.32 22.23 ± 0.21 - -

Table 2. Validation set error (%) on 128× 128 down-sampled ImageNet classification. The better results are bolded.

Top1 Error (%) Test Train Average Gap Top5 Error (%) Test Train Average Gap

WRN-18 35.52 ± 0.11 23.67 ± 2.05 11.85 14.27 ± 0.02 7.33 ± 2.25 6.94
WRN-18+reg 34.99 ± 0.10 24.0 ± 3.11 10.99 13.85 ± 0.05 7.31 ± 1.07 6.54

consider β ∈ {1, 5, 10, 20, 30, 40, 50, 75, 100}. We keep

all the other training hyper-parameters, schemes as well as

the setup identical to those in their original paper whenever

possible (details in Appendix E). We train 5 separate models

for each network-dataset combination on CIFAR-10 and

CIFAR-100 and train 3 models for ImageNet. We report

the test errors in percentage (mean ± std.) in Table 1 and 2,

where “+reg” indicates training with our regularizer applied.

The results demonstrate that our method provides consistent

generalization improvement for a wide range of DNNs.

7.2.1. TIME COMPLEXITY FOR ALGORITHM 1

We benchmark WRN-18 on the down-sampled ImageNet

classification dataset with 2 Nvidia 2080 Ti GPUs and a

batch size of 128. With parallelization, the average training

time per mini-batch is 185.7ms without regularizer applied

vs. 285.6ms with regularizer applied. It only takes around

1.5x longer time per gradient update for Algorithm 1.
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By ablation study, we find that our regularizer works the

best in the mid and late stage of DNN training, e.g., we only

use the regularized update after the first learning rate drop

in all of our experiments. In the beginning stage where the

optimization process is not stable, our regularizer can result

in great numerical errors. By only applying Algorithm 1

during the later stages, the training speed can be further

increased by a large margin.

7.2.2. THE CHOICE OF THE OPTIMIZER

As described in Algorithm 1, our proposed regularizer is

not tied to a specific optimizer. We perform experiments

with SGD+Momentum because it is chosen to be used in

ResNet, WRN, and DenseNet, helping all of them achieve

current or previous state-of-the-art results. Our regularizer

aims to find better “flatter” minima to improve generaliza-

tion whereas adaptive optimization methods such as Adam

(Kingma & Ba, 2014) and AdaGrad (Duchi et al., 2011)

try to boost up convergence, yet usually at the cost of gen-

eralizability. Recent works (Wilson et al., 2017; Keskar

& Socher, 2017) show that adaptive methods generalize

worse than SGD+Momentum. In specific, very similar

to our setup, Keskar & Socher (2017) demonstrates that

SGD+Momentum consistently outperforms the others on

ResNet and DenseNet for CIFAR-10 and CIFAR-100. Other

approaches that also utilize local curvature to improve SGD,

such as the Entropy-SGD (Chaudhari et al., 2017) men-

tioned in Sec. 2, have empirical results rather preliminary

compared to ours.

Table 3. The proposed metric computed on local minima obtained

with or without applying the proposed regularizer. Each entry

represents mean ± std. among 5 runs. Smaller values are bolded.

ResNet-20 WRN-28-2 DenseNet-k12

w/o reg. -979.3 ± 22.3 -689.6 ± 24.9 -850.3 ± 23.5
with reg. -1138.1 ± 11.0 -748.7 ± 21.3 -886.2 ± 20.5

7.2.3. GENERALIZATION BOOST AS A RESULT OF

BETTER LOCAL MINIMA

We perform a sanity check to illustrate that our regularizer

indeed induces better local minima characterized by our

metric, i.e., our proposed regularizer is consistent with our

proposed metric. For ResNet, Wide-ResNet and DenseNet

trained on CIFAR-10, we compute the metric on local min-

ima obtained with or without applying the regularizer. In

specific, our regularizer has an impact on the optimization

process, leaving training loss slightly different for models

with or without the regularizer. To ensure our assumption

that those local minima have similar close-to-zero training

loss, before computing γ̂ for each model, we normalize and

scale the softmax output for each individual training sample.

This operation makes comparison between different DNN

models robust without changing their underlying behaviors.

Table 3 shows that the resulting generalization boost aligns

with what captured by our metric.

8. Conclusion and Future Work
In this paper, we show a bridge between the field of deep

learning theory and regularization methods with respect to

the generalizability of local minima. We propose a metric

that captures the generalization properties of different lo-

cal minima and provide its theoretical analysis including a

generalization bound. We further derive an efficient approxi-

mation of the metric and a practical and effective regularizer.

Empirical results demonstrate our success in both capturing

and improving the generalizability of DNNs.

Moreover, we find that our proposed regularizer might be

further simplified and a dynamic scheduling of the hyper-

parameter β can provide even more improvement to the

generalization performance. In general, our exploration

promises a direction for future work on the regularization

and optimization of DNNs.
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Appendix

A. Proof of Equation 1 in Section 4
Let us first review the Equation 1 in Section 4:

IS(w0) = ∇2
wL(S, w0) = E

(x,cx)∼S
[∇w ln pw0

(cx)∇w ln pw0
(cx)

T ]

To prove this equation, it suffices to prove the following equality:

−∇2
w��S(w) =

∑
(x,y)∈S

K∑
i=1

yi[∇w ln p(cx = i|x;w)∇w ln p(cx = i|x;w)T ]

For convenience, we change the notation of the local minimum from w0 to w and further denote p(cx = i|x;w) as pxw(i).

Since −∇2
w��S(w) = −∑

(x,y)∈S
∑K

i=1 yi ∇2
w ln pxw(i), for each (x, y) ∈ S and i ∈ {1, 2, ...,K}, we have:

[∇2
w ln pxw(i)]j,k =

∂2

∂wj∂wk
ln pxw(i)

=
∂

∂wj

( ∂
∂wk

pxw(i)

pxw(i)

)

=
pxw(i)

∂2

∂wj∂wk
pxw(i)

pxw(i)
2

−
∂

∂wj
pxw(i)

pxw(i)

∂
∂wk

pxw(i)

pxw(i)

=

∂2

∂wj∂wk
pxw(i)

pxw(i)
− ∂

∂wj
ln pxw(i) ·

∂

∂wk
ln pxw(i) (8)

Since w0 is a local minimum of full training accuracy, as described in Section 4, and yi = pxw(i) for i ∈ {1, 2, ...,K}, when

taking the double summation, the first term in Equation 8 becomes:

∑
(x,y)∈S

K∑
i=1

∂2

∂wj∂wk
pxw(i) =

∂2

∂wj∂wk

∑
(x,y)∈S

K∑
i=1

pxw(i) =
∂2

∂wj∂wk
N = 0

Then it follows that:

[∇2
w��S(w)]j,k = −

∑
(x,y)∈S

K∑
i=1

yi[∇w ln pxw(i) ∇w ln pxw(i)
T ]j,k

B. Proof of the Generalization Bound in Section 5.2
Remind that in Section 5.2 we pick a uniform prior P over w ∈ M(w0) and pick the posterior Q of density q(w) ∝
e−|L0−L(S,w)| with L0 =Δ L(S, w0). Then we have the upper bound of the expected generalization loss Ew∼Q[L(D, w)] in

terms of the expected training loss Ew∼Q[L(S, w)] and γ(w0).

To prove Theorem 1, let us review the PAC-Bayes Theorem in McAllester (2003):

Theorem 2. For any data distribution D and a loss function L(·, ·) ∈ [0, 1], let L(D, w) and L(S, w) be the expected loss
and training loss respectively for the model paramterized by w, with the training set |S| = N . For any prior distribution P
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with a model class C as its support, any posterior distribution Q over C (not necessarily Bayesian posterior), and for any
δ ∈ (0, 1], we have with probability at least 1− δ that:

E
w∼Q

[L(D, w)] ≤ E
w∼Q

[L(S, w)] + 2

√
2DKL(Q||P) + ln 2N

δ

N − 1

PAC-Bayes (McAllester) For a data distribution D and a loss L(·, ·) ∈ [0, 1], let L(D, w) and L(S, w) be the expected
loss and the training loss; the training set |S| = N is sampled from D. Given arbitrary prior P and posterior Q (no need to
be Bayesian posterior) supported on a model class C, and for any δ > 0, we have, with probability at least 1− δ, that

E
w∼Q

[L(D, w)] ≤ E
w∼Q

[L(S, w)] + 2

√
2DKL(Q||P) + ln 2N

δ

N − 1

As eγ(w0) = |IS(w0)|, we can rewrite the generalization bound we want to prove above as:

E
w∼Q

[L(D, w)] ≤ E
w∼Q

[L(S, w)] + 2

√
W · V 2/Wπ1/W

∣∣IS(w0)
∣∣1/W + 4πeL0 + 2πe ln 2N

δ

2πe(N − 1)

As defined in Section 5.2, given the model class M(w0), whose volume is V , for the neural network fw, the uniform

prior P attains the probability density function p(w) = 1
V for any w ∈ M(w0) and the posterior Q has density

q(w) ∝ e−|L(S,w)−L0|. Based on Assumption 2 in Section 5.2 and the observed Fisher information IS(w0), especially the

Equation 2 derived in Section 4, we have:

L(S, w) = L0 +
1

2
(w − w0)

TIS(w0)(w − w0) ∀w ∈ M(w0)

Denote Σ = [IS(w0)]
−1 = [∇2

wL(S, w0)]
−1. Then Q is a truncated multivariate Gaussian distribution whose density

function q is:

q(w;w0,Σ) =

√
(2π)−n|Σ|−1 exp{− 1

2 (w − w0)
TΣ−1(w − w0)}∫

M(w0)

√
(2π)−n|Σ|−1 exp{− 1

2 (w − w0)TΣ−1(w − w0)} dw

=
exp{− 1

2 (w − w0)
TΣ−1(w − w0)}∫

M(w0)
exp{− 1

2 (w − w0)TΣ−1(w − w0)} dw
(9)

Denote the denominator of Equation 9 as Z and define:

g(w;w0,Σ) =
Δ −1

2
(w − w0)

TΣ−1(w − w0)} ≤ 0

Then q can also be written as:

q(w;w0,Σ) =
exp{g(w;w0,Σ)}

Z

In order to derive a generalization bound in the form of the PAC-Bayes Theorem, it suffices to prove an upper bound of the
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KL divergence term:

DKL(Q||P) = E
w∼Q

ln
q(w)

p(w)

= − E
w∼Q

ln
1

V
+ E

w∼Q
ln q(w)

= lnV + E
w∼Q

g(w;w0,Σ) + ln
1

Z

≤ lnV + E
w∼Q

0− ln

(∫
M(w0)

exp{g(w;w0,Σ)} dw

)
≤ lnV − ln

(∫
M(w0)

exp{− max
w∈M(w0)

L(S, w)} dw

)
= lnV − ln

(
V · exp{− max

w∈M(w0)
L(S, w)}

)
= lnV − lnV + h = h

where h is the height of M(w0) defined in Section 5.1. For convenience, we shift down L(S, w) by L0 and denote the

shifted training loss L0(w) =
Δ L(S, w)− L0 so that L0(w0) = 0. Then

L0(w) =
1

2
(w − w0)

TΣ−1(w − w0) ∀w ∈ M(w0)

Furthermore, the following two sets are equivalent

{w ∈ R
W : L(S, w) = h} = {w ∈ R

W : L0(w) = h− L0}

both of which are the W -dimensional hyperellipsoid given by the equation L0(w) = h− L0, which can be converted to the

standard form for hyperellipsoids as:

(w − w0)
T Σ−1

2(h− L0)
(w − w0) = 1

The volume enclosed by this hyperellipsoid is exactly the volume of M(w0), i.e., V ; so we have

πW/2

Γ(W2 + 1)

√
2W (h− L0)W |Σ| = V

Solve for h, with the Stirling’s approximation for factorial Γ(n+ 1) ≈
√
2πn

(n
e

)n

, we have

h = L0 +

(
V · Γ(W2 + 1)

)2/W
2π

∣∣Σ∣∣1/W ≈ L0 +
V 2/Wπ1/WW (W+1)/W

∣∣IS(w0)
∣∣1/W

4πe

where Γ(·) denotes the Gamma function. Notice that for modern DNNs we have W � 1, and so W
W+1
W ≈ W . We finally

can derive the generalization bound in the form of the PAC-Bayes Theorem as:

E
w∼Q

[L(D, w)] ≤ E
w∼Q

[L(S, w)] + 2

√
W · V 2/Wπ1/W

∣∣IS(w0)
∣∣1/W + 4πeL0 + 2πe ln 2N

δ

2πe(N − 1)

C. Derivation of Equation 6 in Section 5.3
First, let us present the well-known theorem in linear algebra that relates the eigenvalues of a matrix to those of its

sub-matrices.
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Theorem 3. Given an n× n real symmetric matrix A with eigenvalues λ1 ≤ ... ≤ λn, for any k < n denote its principal
sub-matrix as B obtained from removing n− k rows and columns from A. Let ν1 ≤ ... ≤ νk be the eigenvalues of B. Then
for any 1 ≤ r ≤ k, we have λr ≤ νr ≤ λr+n−k.

Let {νn}N ′
n=1 be the eigenvalues of 1

W ξt(w0), which is a N ′ ×N ′ sub-matrix of IS′(w0); then

γ̂(w0) =
1

T

T∑
t=1

ln
∣∣ξt(w0)

∣∣ = 1

T

T∑
t=1

ln
∣∣W · 1

W
ξt(w0)

∣∣ = N ′ lnW +
1

T

T∑
t=1

N ′∑
n=1

ln νn

Theorem 3 gives the relation between νn and λn, defined above and in Section 5.3 as the nth smallest eigenvalues of
1
W ξt(w0) and that of IS′(w0), respectively. For sufficiently large N ′, we can use νn to approximate λn, which ignores the

eigenvalues of IS′(w0) larger than λN ′ . This is reasonable when estimating γ(w0), since in general the majority of the

eigenvalues of the Hessian for DNNs are close to zero with only a few large “outliers”, and so the smallest eigenvalues are

the dominant terms in γ(w0) (Pennington & Worah, 2018; Sagun et al., 2018; Karakida et al., 2019). A specific bound of

the eigenvalues remains an open question, though. In short, we have
∑N ′

n=1 νn ≈ ∑N ′

n=1 λ
′
n and consequently:

W

N ′ γ̂(w0) +W ln
1

W
=

W

N ′ γ̂(w0)−W lnW

=
W

N ′
(
γ̂(w0)−N ′ lnW

)
=

1

T

T∑
t=1

W

N ′

N ′∑
n=1

ln νn

≈ 1

T

T∑
t=1

W

N ′

N ′∑
n=1

lnλ′
n

Finally we we have

lim
T→∞

1

T

T∑
t=1

W

N ′

N ′∑
n=1

lnλ′
n = γ(w0)

D. Details of Calculating the Metrics in Section 7.1
For the following three metrics, we apply estimation by sampling a subset St from the full training set S for T times and

averaging the results.

• Frobenius norm:
∥∥∇2

wL(S, w)
∥∥2
F

• Spectral radius: ρ(∇2
wL(S, w))

• Ours: γ̂(w) = 1
T

∑T
t=1 ln |ξ(St, w0)|

For the Frobenius norm based metric, from Equation 1 & 2 in Section 4 we have:

∥∥∇2
wL(S, w)

∥∥2
F
=

∥∥IS(w)∥∥2F =
1

N

∑
(x,y)∈S

K∑
i=1

∥∥∥(∇w[�x(w0)]i
)(∇w[�x(w0)]i

)T∥∥∥2
F

We define y = argmax(y). Similar to Equation 4 in Section 5.3, we approximate y by ỹ and so

∥∥∇2
wL(S, w)

∥∥2
F
≈ 1

N

∑
(x,y)∈S

∥∥∥(∇w[�x(w0)]y
)(∇w[�x(w0)]y

)T∥∥∥2
F
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Summing over the entire Hessian matrix is too expensive as there are W ×W ×N entries in total. We therefore estimate

the quantity by first sampling a subset St ⊂ S and then sampling 100,000 entries of
(∇w[�x(w0)]y

)(∇w[�x(w0)]y
)T

. We

perform the estimation T times and average the results, similar to the approach when computing γ̂(w).

Also by Equation 2 and the approximation in Equation 4, the spectral radius of Hessian is equivalent to the squared spectral

norm of 1/
√
NJw[L̃(S, w)]. We also perform estimation (with irrelevant scaling constants dropped) by sampling St for T

times, i.e., via 1
T

∑
t

∥∥Jw[L̃(St, w)]
∥∥2
2
.

Furthermore, in all our experiments that involves samplings St, we set |St| = N ′ = T = 100.

E. Architecture And Training Details in Section 7
Architecture details are as below

• The plain CNN is a 6-layer convolutional neural network similar to the baseline in Lee et al. (2016) yet without the

“mlpconv” layers (resulting in a much fewer number of parameters). Specifically, the 6 layers has numbers of filters

as {64, 64, 128, 128, 192, 192}. We use 3× 3 kernel size and ReLU as the activation function. After the second and

the fourth convolutional layer we insert a 2× 2 max pooling operation. After the last convolutional layer, we apply a

global average pooling before the final softmax classifier.

• For ResNet-20, WRN-28-2-B(3,3), WRN-18-1.5 and DenseNet-BC-k=12, we use the same architecture as in their

original papers, respectively.

The training details are

• For the plain CNN, we initialize the weights according to the scheme in He et al. (2016) and apply l2 regularization of

a coefficient 0.0001. We perform standard data augmentation, the one denoted 4-crop-f in Section 7.1. We use

stochastic gradient descent with Nesterov momentum set to 0.9 and a batch size of 128. We train 200 epochs in total

with the learning rate initially set to 0.01 and then divided by 10 at epoch 100 and 150.

• For ResNet-20, WRN-28-2-B(3,3), WRN-18-1.5 and DenseNet-BC-k=12, we use the same hyper-parameters, training

schemes, data augmentation schemes, optimization methods, etc., as those in their original papers, respectively. An

exception is that for WRN-18-1.5 on ImageNet, we first resize all training images to 128× 128, and then apply random

crop (of size 114× 114), horizontal flip and standard color jittering together with mean channels subtraction as in He

et al. (2016). We adopt single crop (central crop) testing for the down-sampled 128× 128 validation images.


